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1. Introduction 

The Nash embedding theorem [13] asserts that any Riemannian manifold 
possesses an isometric embedding into a Euclidean space of sufficiently large 
dimension. This article is devoted to a proof  of an equivariant version of Nash's 
theorem, 

Main Theorem. I f  M is a compact Riemannian manifold and G is a compact Lie 
group which acts on M by isometries, there is an orthogonal representation p of  G 
on some Euclidean space 115 N and an isometric embedding from M into IE N which is 
equivariant with respect to p. 

The representation p can be regarded as a Lie group homomorphism from G 
into the orthogonal group O(N) which acts on IE N by rotations and reflections; a 
smooth map  X: M ~ I E  N is equivariant with respect to p if and only if X(~p)  
=p(cr) X(p), for all ~r~G, pEM. 

The main theorem is true in both the C ~ and real analytic categories. We 
will work in the C ~ category for the time being, and return to the real analytic 
case in w 4. Moreover, the theorem holds for manifolds with boundary. 

The main analytic tool used by Nash to prove his isometric embedding 
theorem is an implicit function theorem based upon the Newton iteration 
method. The implicit function theorem applies to the equivariant case with 
virtually no change. In order to apply the implicit function theorem we need to 
approximate a given G-invariant Riemannian metric on M by a metric induced 
by an equivariant embedding; we will do this by using the theory of the Laplace 
operator on compact  Riemannian manifolds. 

According to Gromov  and Rokhlin [7], any n-dimensional compact  Rie- 
mannian manifold can be isometrically embedded in IF, N, where N = (1/2) n(n + 1) 
+ 3 n + 5. No such universal bound is possible in the equivariant case, and in 
fact, given any positive integer N, it is possible to construct a left invariant 
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metric on the group S 3 of unit quaternions which is not induced by any 
equivariant embedding in IE" for n __< N, as described in w 6 of this article. 

Moreover, the equivariant isometric embedding theorem does not hold 
without the assumption that M be compact. Indeed, Bieberbach [1] shows that 
the Poincar6 disc with the hyperbolic metric of constant curvature - 1 together 
with the circle group of rotations about the origin possesses no equivariant 
isometric embedding in any finite-dimensional Euclidean space. 

It suffices to prove the equivariant isometric embedding theorem in the 
special case where M is an n-dimensional sphere S" with a Riemannian metric 
invariant under a Lie subgroup G of O(n+ 1). Indeed, by a theorem of Mostow 
and Palais [-2, p. 315], any compact G-manifold possesses an equivariant embed- 
ding in a sphere S" of sufficiently large dimension, even if the manifold has 
boundary, and by a partition of unity argument one easily extends a G-invariant 
metric on M to a G-invariant metric on S" which makes this equivariant 
embedding isometric. 

It will be convenient to formulate the equivariant isometric embedding 
problem in terms of certain Frhchet spaces. If G is a given compact Lie group 
acting on a compact manifold M and p: G~O(N)  is a given representation, let 

C~176 IEN)= {C 00 maps X: M~IEN}, 

C~, p(M, IE u) = {XE Coo (M, IEN)I X is equivariant with respect to p}, 

Metoo(M)= {Coo symmetric rank two covariant tensors on M}, 

Met~ (M) = {g e Met OO (M) I g is G-invariant}. 

These vector spaces become Fr6chet spaces with the usual family of C k norms, 
(Notation: ILX[Ik and [IgHk will denote the C k norms of elements XsCOO(M, IEN), 
g ~ Met OO (M).) Finally let 

C~ (M, IE N) = ~ { C~, p(M, IEN) I p: G ~ O(N) a representation}. 

We define a map F: C~(M, IEN)~Metg(M) by letting F(X) be the metric 
induced on M by X. In terms of local coordinates (u 1 .. . .  , u") defined on an open 
subset U of M, 

F(X) I U =  y (X). (X) du i duJ. 
j ~  "5 

To prove the theorem, we need to show that given a positive-definite 
g~Met~(M), there is some representation p: G-+O(N) and some embedding 
X e  Ca~ p(M, IE N) such that F(X) = g. 

We say that an element g~Met~(M) is realizable if there is a mapping (not 
necessarily an embedding) X~C~(M,  IF. N) for some N such that F(X)=g.  The 
set of realizable metrics is closed under addition and multiplication by positive 
scalars. 

There are two steps to the proof of the equivariant isometric embedding 
theorem. The first step consists of constructing a specific "perturbable" embed- 
ding XoEC~(M, IE N~) such that if go=F(Xo),  then any gl~Met~(M) which is 
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sufficiently close to go can be realized as F(X 0 for some embedding 
XI~ C~(M, IENI). This step relies on the Nash implicit function theorem and our 
treatment of it will be based upon the work of Schwartz [14] and Sergeraert 
El5], [16]. The second step consists of showing that any given positive-definite 
g eMet~(M) can be approximated arbitrarily closely by realizable metrics. 

The two steps of the proof are put together in the following way: If g is a 
positive-definite element of Mete(M),  choose a constant c > 0 so that g - c g  o is 
positive-definite, where go is the metric induced by the perturbable embedding 
X o constructed in step 1. (The metric c g o will be induced by the perturbable 

embedding ~ c X o .  ) Use step 2 to approximate g - c g  o by a realizable metric g2; 
g2 =F(X2) for some X z E C ~ ( M  , ]EN2). Then g - g 2  will be close to cg o and hence 

~ M  by step 1, there will be an element XleCG( , IE N1) such that F(X1)=g-g z. 
Hence X=(X~, X2) will be an embedding in C~(M, IE N) (where N = N  1 +N2) 
such that F(X)= g. 

The above theorem extends the main result of an earlier article [10]. 
The two steps of the proof of the main theorem will be given in w167 2 and 3. In 

w we will discuss the modifications necessary for proving the real analytic 
version of the main theorem. In w 5 we will show that even if M is not compact it 
possesses an equivariant isometric embedding into Hilbert space, or into a 
finite-dimensional pseudo-Euclidean space if it has finitely many orbit types. 
Finally, in w 6 we will discuss nonexistence theorems, including an extension of 
Bieberbach's example mentioned above. 

2. Step 1. Nash's Implicit Function Theorem 

Except for a few details, this is just like the corresponding step in the non- 
equivariant case. 

For each choice of representation p, the map F: C~,p(M, 1EN)~Met~(M) 
defined previously is Fr6chet differentiable. Indeed, if X, AX are elements of 
C~G, o( M, IEN), 

F(X + AX)IU= ~ o@(X) o@(X)dui duJ 
i,j=l 

i,j= 1 \ Ouz OUJ {71AJ GU~ / 

+ - -  (AX) (AX) du i du J, 
i, j= 1 ~ui 

from which we see that the Fr6chet derivatives of F are given by the formulae 

i, j= 1 \OU OIA ~ 

F " ( X ) ( A I X ,  A 2 X ) I U = 2  ~ ~ ( A i X )  2 ( d 2 X ) ,  
i,j=l 

F (n) (X) = 0 for n > 3. 
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Let g be a given positive-definite element of Mete(M) and suppose that we 
can find an embedding X~C~,p(M, IE N) such that F(X) is close to g. We might 
then try to construct an embedding X+AX such that F(X+AX) is closer to g 
by solving the linearized equation 

If 
F'(X)(AX)=Ag, where Ag=g-F(X). 

AgIU= f (Ag)ijdu idu j, 
i , j = I  

the linearized equation is 

cqui (X). �9 ~--~ (AX) = (A g)ij. (1) 

Following Nash, we impose the additional condition that AX be perpendicular 
to X(M): 

c~u, (X). AX =0. (2) 

Integrating by parts shows that Eqs. (1) and (2) are equivalent to the linear 
system 

au' (x). (AX)=0 

(~2 1 A ~u'~uJ (x). (AX)= -~(  g),j 
(3) 

Recall that we are given Ag and we wish to solve for AX. It is natural to restrict 
attention to embeddings for which this linear system is nondegenerate. 

Definition. An embedding X: M ~ I E  u is said to be perturbable if for every peM 
there are local coordinates (u 1,...,u") defined on some neighborhood U of p 
such that the matrix of column vectors 

has rank n+�89 (Note that this condition does not depend upon the 
choice of local coordinates.) 

Any G-manifold M possesses a perturbable equivariant embedding into a 
Euclidean space of sufficiently large dimension. Indeed, by the equivariant 
embedding theorem of Mostow and Palais mentioned in the introduction, there 
is an equivariant embedding 

X=(x 1, ...,xm): M--,IE "~ 
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into a Euclidean space of some dimension m, from which we can c~ a 
perturbable equivariant embedding 

(x,) 2, 7 x1 xo, 

into a Euclidean space of dimension m + �89 m(m + 1). 
We can rewrite the linear system (3) in the form 

If X is perturbable, tAA will be a nonsingular square matrix and 

AX=A(AA)-:  (_~Ag) (4) 

will be a solution to (3), and in fact the argument given in Schwartz [-14, p. 48] 
or Greene [4, pp. 32, 33] shows that it is the unique solution of smallest length. 
Thus even though A is defined in terms of local coordinates (ul, ..., u") on M, the 
solution AX given by (4) does not depend on the choice of local coordinates. AX 
is a globally defined smooth mapping from M into IE N, which as we will next 
check, is also equivariant. 

If p~M and ~r~G we can choose coordinate systems (u' . . . .  ,u ~) defined on a 
neighborhood U o f p  and (if1, . . . ,ft ,)defined on aU so that 

72~(crq)=ui(q) for q~U. 

Since X is equivariant the matrices 

0 2 ~ 0 2 

are related by the equation 

A(~p) = 0(0) ~4 (p), 

and since p(~) is orthogonal, 

0 
AX(ap)=A-(crP)(tA(aP) "4(':rP))-I (-�89 Ag(ap)) 

/ \ 0 
=p(a)  A(p)(tA(p) A(p)) -1 [-�89 Ag(p)) = p(a) AX (p). 

Thus AX is indeed an element of C~ ~, p(M, IF, U). 
Hence we can define 

(0) 
L(X): Met~(M)~Ca~p(M, IE N) by L(X)(Ag)= A('AA)- : -�89 Ag ' 
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so that 
F'(X) o L(X) = identity. 

Suppose that X o is a fixed perturbable embedding with F ( X o ) = g  o. If g is a 
metric which is close to go, we might try to solve the nonlinear equation F(X) 
= g  by the Newton iteration 

Xn=Xn_l  q-L(Xn_l)(g-F(Xn_l)) ,  n>=l. 

If the X,'s were to converge in the C ~ topology to an element 
XooeC~,,p(M, lElV), it would follow immediately that F ( X ~ ) = g ,  but unfor- 
tunately this straightforward iteration does not converge since the estimate we 
obtain for L(X), 

IIL(X)(g-- F(X))[Ik_ 2 ~ Mk IIXII~ IIg-- F(X)llk, (5) 

M k a constant, involves a loss of two derivatives. 
To circumvent this difficulty, we make use of smoothing operators S(t): 

CS, o(M, IF, N) --, C~, p(M, IE N) which satisfy the estimates 

II S(t) Xilk+, <Ak, ,  t ~ IlXll,, (6) 
][(I-- S(t)) XNk <=Bk, lt -I []XNk +l, 

where Ak, t, Bk, ~ are suitable constants. In the nonequivariant case, smoothing 
operators S(t): C ~ (M, IE N) ~ C~(M, IE N) satisfying (6) are constructed by Lang 
[9] or Schwartz [14, pp. 38, 39]. In the equivariant case, we set S(t)=PoS(t), 
where P: C~176 IEN) --, C~,p(M, IE N) is the projection operator defined by 

P(X) (p) = ~ . ( a -  1) X(ap) d. ,  
G 

the integral being taken with respect to the Haar  measure on G. (It is easily 
checked that P is bounded in each C k norm.) Once we have defined these 
smoothing operators we can consider the modified Newton iteration: 

X n = X , _ l + S ( t n  1) oL(X ,_ I ) (g -F(X ,_ I ) ) ,  n>l ,  

where { t>t2 , . . . , t ,_  1, t , , . . .} is a suitably chosen increasing sequence of real 
numbers. 

The remarkable fact is that the t~'s can be chosen so that the modified 
Newton iteration converges. This is essentially the content of Nash's  implicit 
function theorem. It is easiest to prove convergence when it is assumed (without 
loss of generality) that M is the n-sphere and G is a subgroup of O(n + 1). We can 
use the fact that F and L are invariant under rotations of the sphere (just as 
Schwartz [-14, pp. 40, 41] uses the translation-invariant nature of F and L on the 
torus in his treatment of the nonequivariant case) to establish estimates which 
are somewhat stronger than (5): If ][AXI]2< 1, 

[IL(X o + AX) Agllk_ 2 --<__ Adk(1 q- [1AXI[k)H AgHk, 

][L(Xo + AX) F(Xo + AX)Hk_ z < Mk(1 + [IAXHk), 
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where X 0 is the perturbable embedding fixed earlier. These inequalities yield the 
hypotheses for the elegant version of the implicit function theorem proven in the 
short note of Sergeraert [15], which can be applied without any change to our 
situation to establish convergence. It follows from Sergeraert's theorem that 
there exist k and ~ such that if ][g--g011k<8, then g can be realized by an 
equivariant isometric embedding, and Step 1 is finished. 

3. Step 2. Approximation by Realizable Metrics 

Thus the proof of the theorem reduces to showing that any positive-definite G- 
invariant metric can be approximated by realizable metrics. It will suffice to 
show that if g is any positive-definite element of Mete(M), k a positive integer, 
and e a small positive number, there is a realizable metric F(X) such that Pig 
--F(X)llk<a 

It follows from the nonequivariant version of the Nash embedding theorem 
that any positive-definite metric g on M can be expressed as a finite sum 

g =  ~ dyi@dY i, 
i = l  

where each yi: M ~ R  is a smooth function. (Instead of relying on the entire 
proof of the Nash embedding theorem the following argument could rest on the 
weaker assertion that g can be Ck-approximated by a sum ~dy~| ~, an 
assertion which is proven in Nash [13, p. 58] or Greene [4, p. 39] by a direct 
construction.) 

According to the theory of elliptic operators on compact manifolds (as 
presented in [12, Chap. 3] for example), each yg can be approximated in the C k 
topology by a finite linear combination of eigenfunctions for the Laplace 
operator on M. It follows that there exists a finite sum 

ni 

f,= Y, fij, 
j = l  

where each f~j is an element of some eigenspace V~j for the Laplace operator, 
such that 

i i tidy | -df~| <~/n, 

and hence 

Ng- dfi| llk< . 
i=1 

Since G acts on M via isometries it acts on each eigenspace V~ via a linear 
representation (as described in [17, p. 257]). Let Vii be the minimal G-invariant 

ni 

subspace of ~ V/j which contains f/, and define a smooth equivariant map 
j = l  

Xi: M~Vi* by (Xi(P))(f)=f(p) for f ~ V  i. 
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Here we are using the fact that Vii is a linear space of real-valued functions 
defined on M. 

We now construct a suitable G-invariant Euclidean metric on Vii*. By 
differentiation under the integral sign it can be shown that 

defined by 

P" Met ~ (M) ~ MetS (M) 

P(g) (P) = S (a* g) (p) da, 
G 

where da is Haar measure, is norm decreasing in each C k norm. We have 

P(dJi| ) = ~ a* (dfi| da, 
G 

where fi is regarded as a real-valued function on M. But f~ also determines a 
linear functional J~: Vi*~ IR which satisfies the equation f~o X i =fi .  We give V~* 
the Euclidean metric 

if-- S a* (dJ~| da. 
G 

(This metric is positive definite because as a ranges throughout G, a(fl) gen- 
erates V/.) With this choice of Euclidean metric on V/* it is easily verified that 

F(X,)=-P(df~| 

The Xi's fit together to give an equivariant mapping X = ( X 1 ,  ... ,Xn) into a 
Euclidean space of large dimension such that 

Jig- F(X) LIk = IIg- ~ F(X31Lk 
= []g--ZP(df~| I[g-Zdf~| 

This shows that g can be Ck-approximated by a realizable G-invariant metric 
and finishes the proof of the main theorem. 

4. Real Analytic Embeddings 

If the Riemannian manifold M is real-analytic, then the embedding in the 
equivariant isometric embedding theorem may be chosen to be real-analytic. 
The proof of this follows, as before, from the following two steps. 

Step1. Given an analytic perturbable XI~C~,p(M, IE N) and an analytic 
gcMet~(M) sufficiently close to F(X1) in the C ~~ topology, then there exists an 
analytic X~  Co~ p(M, IE N) such that F(X)=g.  

Step 2. The analytic realizable metrics are dense in Mete(M). 

For the proof of step 1, we follow the proof of the analytic isometric 
embedding theorem in Greene-Jacobowitz [-5]. We remark that their proof also 
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holds for compact manifolds with boundary. See also the more general treat- 
ment by Gromov [6]. 

As before we use the Newton iteration 

X , = X , _ I  +L(X ,_O(g-F(X ,_O)  

only this time we don't have to use smoothing operators. Each X,  is evidently 
ff oo equivariant (i.e., X,  CG, p(M, IEN)) and analytic. By extending everything to a 

complex analytic extension of M and using Cauchy estimates, Greene and 
Jacobowitz are able to show that 

X = lira X.  
n ~ o o  

exists, is real-analytic, and satisfies F(X)=g.  Step 1 follows from this. 
If M has no boundary, the proof of step 2 is exactly as before, because the 

eigenfunctions of A on M are real-analytic. If M has boundary we can analyti- 
cally continue M to some slightly larger open Riemannian manifold N. Let 

M~ = {x e N  [ dist(x, M) < e} 

for small enough e > 0 for this to be a compact manifold with boundary. We can 
suppose that the G-action has been analytically continued to M~. Note that M e 
is real-analytic, and G acts on it by isometries. The eigenfunctions of A on M~ 
with Dirichlet boundary conditions are real-analytic. Furthermore linear com- 
binations of eigenfunctions (when restricted to M) are dense in Ck(M) for all k. 
The proof of step 2 now proceeds exactly as before. 

5. Embeddings into Other Spaces 

The examples in w 6 show that we cannot drop the condition that M be compact 
in our main theorem. However, we do have the following 

Theorem. Let G be a compact Lie group acting by isometries on some Riemannian 
manifold M, where M may have boundary and need not be compact. 7hen there 
exists a continuous orthogonal representation p on some real separable Hilbert 
space ~ and an isometric embedding from M into H which is equivariant with 
respect to p. 

Proof Let f :  M-ME N be an isometric embedding. Let ~ be the direct sum of N 
copies of LZ(G), i.e., 

= {~ = (~1, --., ~,)] each ~,eL2(G)}, 

where the integration is with respect to normalized Haar  measure. Define a 
continuous orthogonal representation p of G on ~ by 

(p(rr)~)(6) = ~(6rr) a, 6eG, 6 ' e ~ .  
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For x ~ M  and a~G define h: M ~  by 

h(x)(a) = f (ax) .  

h is obviously smooth and injective. 
We claim that h is an equivariant isometric embedding, h is equivariant 

because for x e M  and o, 6EG, 

h(crx)(6) = f (6 crx) 

=h(x)(6a) 

= {p(a) [h(x)] } (6-) 
SO 

h(ax) = p(a) h(x). 
If v ~ TM, then 

h,(v)(a) = (fo a), (v) = f ,(a,(v)) 
SO 

Ih,(v)(~r)l = I f , ( o ' , ( v ) ) l  = 1 % ( 0 t  = Ivl 
and 

<h,(v), h,(v)>,e = 5 [h,(v)(a)12da 
G 

= ff Ivl 2d0- 
G 

= l v l  2. 

Hence h is isometric. This completes the proof. 
We now discuss embeddings into pseudo-Euclidean space, i.e., IR N with an 

indefinite metric. It is shown in the next section that the Poiucar6 n-disc does 
not have an equivariant isometric embedding into Euclidean space. However it 
does have an equivariant isometric embedding into the pseudo-Euclidean space 
(m "+1, dx~+ . . + d x .  ~ 2 = - 1 .  �9 - d x . + l )  as the hyperboloid x~+ ... + x  2 -  x.+2 1 

Let G be a compact Lie group acting smoothly on some (not necessarily 
compact) manifold M. Recall that two orbits are said to be equivalent if the 
corresponding isotropy groups are conjugate�9 An orbit type is an equivalence 
class of orbits�9 The theorem of Mostow and Palais cited earlier possesses a 
noncompact version due to Mostow [11]: 

M has an equivariant embedding into some Euclidean space if and only if the 
number of orbit types is finite. 

Now suppose that M has a symmetric bilinear form g (such as a Riemannian 
or pseudo-Riemannian metric) and that the action of G preserves g. Then using 
Mostow's theorem and a trick due to Gromov [6-1 we now prove: 

Theorem. M has an equivariant isometric embedding into some pseudo-Euclidean 
space if and only if the number of orbit types is finite. In particular, if M is 
compact then M has an equivariant isometric embedding into some pseudo- 
Euclidean space, 

Proof. In view of Mostow's theorem, it is sufficient to construct an equivariant 
isometric embedding from a given equivariant embedding XeC~,p(M, IEN). 
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According to w we can suppose that X has been modified to make it 
perturbable. 

In the notation of w 2, let 

g , =  ~ (~X ~ X  i 
F(X) = L ~u~ui'~uJu ~ du du j 

be the metric on M induced by X, where (U 1 . . . .  ,U n) are local coordinates on M. 
Let 

Then 

and hence 

Y = L (X) (g - g') ~ C~, p(M, IEN). 

g -- g' = F'(X).  L ( X ) ( g -  g') 

=F' (X)(Y)  

/~X ~Y OX 3 Y \  
=E 0. 7) du'a   

F(X  -]- Y) = 2 (X @ Y). ~u j (X -~- Y) dbl i dig j 

= F ( X ) + g - g ' + F ( Y )  

= g + F ( Y ) .  

If] ' [  is the usual norm on 1R N then the map 

(x + Y, Y): (M, g)~0R N, I" 12) O(~ N, - I"  12) 

is an equivariant isometric embedding. 

6. Nonexistence Theorems 

Let G be a compact Lie group acting on a Riemannian manifold M by 
isometries. In this section we will show that, under certain circumstances, M 
may not have any equivariant isometric embedding into IE N. This means that M 
has no isometric embedding into IE N which is equivariant with respect to some 
homomorphism from G to the isometry group of IE N. However, any homomor- 
phism G--,Isom(IE N) is conjugate to a homomorphism G-~O(N)~Isom(IEN), so 
it is sufficient to consider isometric embeddings which are equivariant with 
respect to some orthogonal representation of G. 

Lemma. Let {X> X2, X3} be a basis for ~u(2) satisfying 

[Xl,X2]=x3 [x2,x3o=xl [x~,xl]=x2. 

Then for any Lie algebra homomorphism p: ~a(2)~u(N) and any v~l12 N we have 

2 N - 1  Ip(X3)vl <~(Ip(XOvlZ +lp(Xe)vl2). 
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Proof It is sufficient to prove this for irreducible representations. So suppose that 
p is an irreducible representation of dimension 2I+I<__N. Then p(X3) has 

eigenvalues - l l / ~  , ( - l +  1)1/-Z- 1 , . . . , l ] f  ~- 1, 
3 

p(X~) 2 has the value - l(l + 1). 
i = l  

It follows that 

and 

Hence 

and the Casimir operator 

lp(Xa)vl 2 < 12 Ivl 2 

3 

lp(X~)vL 2 = l(l + 1)lvl z. 
i = 1  

IP(Xl)Vl 2-/-[p(X2)vl 2 ~ llvl 2 ~ l f l ( X 3 ) v l  2. 

Theorem. Let G be a non-abelian compact Lie group (with Lie algebra g) acting 
smoothly on M. Suppose that for some point yeM,  the derived map g ~ T y M  is 
injective. 7hen for any integer N there exists a G-invariant metric on M such that 
M has no equivariant isometric embedding into IE s. 

Proof By hypothesis, there exist nonzero X 1, X 2, X3Eg satisfying 

[X1 ,X2]=X3  [ X 2 , X 3 ] = X i  [X3,X1] =X2.  

Furthermore the vectors 
~ d tx i  

Xi= ~ e " ylt=oe TyM 

are linearly independent. Given N, put a metric on {21, 2 2, X3} that satisfies 

12312 > N---2-~l (12112 + 12212). 

Extend this to a G-invariant metric on M. 
Now suppose we had an isometric embedding f :  M-ME N which is equi- 

variant with respect to p: G~O(N).  Denote also by p the induced map g ~  o(N). 
Then 

f ,  (Xi) = p(Xi) f (y) 
and hence 

Ip(X3) f(y)t z = I f,(3;3)1 z 

=L){3] a 

N - 1  
2 

N - 1  
2 

which contradicts the lemma. 

>~(12112+12212)  

- - - ( I / , ( 2  07 + I f ,(22)?) 

- - -  (Lp(X1) f(y)l 2 + IP(X2) f (y)l z) 
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Thus left-invariant metrics on SU(2) (or any other compact non-abelian Lie 
group) require arbitrarily many dimensions for an equivariant isometric embed- 
ding into Euclidean space. 

In general, if the manifold M is not compact there may not be any 
equivariant isometric embedding of M into Euclidean space. There are examples 
of manifolds with compact Lie group actions having infinitely many orbit types. 
These manifolds do not even have equivariant embeddings into Euclidean space. 
A somewhat different example was provided by Bieberbach [1] who showed 
that the Poincar6 disc with its obvious circle action has no equivariant isometric 
embedding into Euclidean space. The following is a mild generalization" 

Theorem. Let M be a complete simply-connected manifold with sectional curva- 
tures <--e<O, and let G be a compact connected Lie group acting nontrivially 
on M by isometries. Then M has no equivariant embedding into any Euclidean space. 

Proof By a theorem of Cartan (see [8J, p. 111) there exists a point peM which is 
fixed by G. The Cartan-Hadamard theorem tells us that exp: TpM~M is a 
diffeomorphism. Without loss of generality, we may take the group G to be S 1. 

Let 7: [0, oe)-~ M be a geodesic ray (parametrized by arc-length) with 7(0)=p 
which is not fixed by the S 1 action. Define a vector field V along 7 by 

V(t)=~--~ei~7(t)l~=o, te l0 ,  oo),ei~eS1. 

V is a Jacobi field along 7, and satisfies 

V(0) = 0, 

v'(o) • V(o), 

I v'(0)l + 0. 

We now consider the analogous set-up in Mo, the space form of constant 
curvature - e .  In geodesic coordinates about a point po~Mo, the metric on M o 
is 

ds 2 = dr ~ + sinh2(]/~r) dO2. 

Here r is the distance to Po and 0 is the angle about Po. Let 70: [0, ~ ) ~ M  o be a 
geodesic parametrized by arc-length with 7o(0)=po. Let V o be the vector field 
[V'(0)I c~/00 restricted to 70. Vo is a Jacobi field satisfying 

Vo(O)=O, 
yo(O) • 7;(o), 

[ v;(0)/= I v'(0)l. 

The  above Jacobi fields satisfy the hypotheses of the Rauch comparison 
theorem (see [3]), so we may conclude that [V(t)l>lVo(t)[ for all t e [ 0 , ~ ) .  We 



132 

easily compute  

J.D. Moore and R. Schlafly 

s inh( ] /70  
IYo(t)l=lv'(o)l 1/~ 

For  re[0,  oo), let Ct: [ 0 , 2 n ] ~ M  be the closed curve given by 

Ct(~)=e i~. y(t) 0_<~<2~.  

The length of  C t is 2~lV'(t)l, so 

length (Ct) > 2hi V'(0)] 
sinh(l/Tt) 

For  the sake of  obtaining a contradiction, suppose that f :  M ~ I E  N is an 
isometric embedding which is equivariant  with respect to 

ei~-~e ~B e i ~ S a , B E o ( N ) .  

Then the curve f o  C~ satisfies 

( f  o Ct)(a) = e ~B. f (y(t)) 
and has length 

length ( f  o C~) = 2 n ]Bf (7 (t))l 

< 2 n  L]Bll (I f (P)I + t). 

But f is isometric, so combining this with the above inequality gives 

2 n lV'(0)], sinh~l/~t) < 2 n lIB ]l (1 f (P) I + t) 

which is a contradict ion for large t. 
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