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Let Fbe the curvature of some connection on some principal bundle over R*. I show that if F

decays as fast as (~Inr) ™' as 7 tends to infinity, then

—1—, Jter
8

is an integer. If F decays like r—2, any real value is possible. There is an analogous statement for

R2"{n > 2), although it fails for R%.
PACS numbers: 11.10.Np

1. INTRODUCTION

Let G be a compact Lie group and let p: G=UNV ) bea
representation. Let Fbe the curvature of some connection on
some principal G bundle over S*. The Chern number of the
associated vector bundle is

ey = —}—f trp(F ).
8 Js+ |

! o
According to the theory of characteristic classes, this quanti-
ty is always an integer.

Now consider the curvature Fofa connection on a prin-
cipal G bundle over R, In this paper, we prove

Theorem 1.1: If

|Fl<C /P nr,
for some constant C, then

2

- | tolF )
87 Jue

’
is an integer.
~ This formula is of interest in quantum field theory be-
cause the curvature F is the same as a Yang-Mills (gauge)
| field over Euclidean space. For discussions of related mat-
ters, see Refs. 1, 2, and 3.

If G is abelian or N = 1, the integer obtained in Theo-

rem 1.1 must be zero. If G = SU(V }(V > 1), any integer value
"is possible.

It is not known whether the hypothesis of Theorem 1.1
can be relaxed to the energy f. |F | being finite, although
this is suggested by Refs. 2, 4, and 5. However, it is shown in
Sec. 6 that (1/87%)f x-p(F )* may not be an integer if we as-
sume only that |F |<C /7. This example is equivalent to the
one given in Ref. 5, and has infinite energy.

Theorem 1.1 is proved in Secs. 2, 3, 4, and 5. Section 3
gives a holonomy formula similar to the one in Ref. 6 and
may be read independently of the rest of the paper. Section 7
shows how to handle dimensions other than four.

1

2. OUTLINE OF THE PROOF

For the proof of Theorem 1.1 it suffices to consider the
associated U(¥ } bundle. Hence we may, without loss of gen-
erality, take G = U(N ) and suppress mention of p.

Relative to some trivilization of the bundle, the connec-

tion A is a one-form on R* with values in u{V'). The curvature
F=dd+A4?

is a two-form on R* with values in u(NV). The Chern-Weil
formalism (Ref. 7, p. 114) tells us that

trF? =dtr(dF —14°).

| Let S? be the sphere of radius r in R*. If |F |<C /r’lnr. Then
i trF?is integrable on R*. By Stokes’ theorem,

1

1

trF? = lim—l—;
87 Jx

r—w87" Js3

tr(AF — 14 %)

Given € > 0 and r sufficiently large, we will show that

" there exists a smooth map T: §3—U(N) such that

1
8

tr{ AF U3? YT ~1dT))

€
L =
2

If we choose # large enough such that

F-__l__
871'“ 53

87
then it will follow that

tF'—- ——f trT“‘dT)3

We now recall a special case of Bott's work on periodic-
ity in K-theory®.

Theorem 2.1: For N>2 we have an isomorphism

U{N )~Zgiven by assigning toasmoothmap 7: S *—~U(N)
the integer
L j (T~ dT ).
2477
Thus for € > 0 there exists an integer n such that

1,f trF2—n
87 Jn

Hence (1/87°)f - trF? must be an integer.

< €.

3. THE HOLONOMY PROPAGATOR

Let M be the sector in R” described by polar coordinates
(r, @) with 0<r<r, and 0<0<8,,. Suppose we have a connec-
tion 4 on the trivial principal G bundle. For this paper we
can assume that G is U(N), although Theorems 3.1 and 3.2
hold for any Lie group. A is a one-form on M with values in
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(V). The curvature is F=dA4 + 42,
For xeM let ¢,: [0, 1]—M be the curve

e (t)=tx, O<gl l
A section u: M—C" of the associated vector bundle is paral--
let along ¢, iff it satisfies

c*du 4+ Au) = 0.

The fundamental solution to this differential equation is the .
path ordered exponential

1%m(—£A)

%

If u is parallel along ¢, then

ulx) =~ exp( - J;A-u(O)).

Pexp — (fC,A' }is called the holonomy from O to x alongc, . It
may also be defined as a product integral {Ref. 9, p. 15).
Theorem 3.1: If

T(x):Pexp(—J:A)

then
AX)= —dT T '+ T(J:T“'FT)T".

Proof: Plugging in the vector d /dr, we get

|
A(—a->= - ET", é
ar ar !

1

which follows from the definition of T The vector d /96 gives’ :

oT .. P _
dy= = 22T ‘+T(J; FOTdr)T |

where
A=Ad,dr+A4,d6,
F=FdrAdé.
To prove this, we first observe that
a4, 4 (6T - ,)

| 59 30\ ar
_PT e T T,
a6 ar ar a6 }
Hence
i[r—'(A2+£T—')T]
ar EY.
S B SR S Y NS SV
ar ar or
@l 0T T
a9 3r 66
=T, T+ Ty
r
T, T
| EY.
~T~'FT.

Continuity of 4 and d7-7 ~' at O require that

50

aT

T"'(Aa +——T")T= frT"F Tdr
27 29 A 0

which gives the formula we wanted. i
Theorem 3.2: The holonomy from 0 to O along dM is
given by the 8-ordered exponential

Pexp( ——J. T"FT).
M
Proof: Let
a pr
Vir,@)= Pexp(f f T~ 'F,Tdr dB)
0 JO

with the ordering over 6, so

Viro 0= Pexp( — |

M

T"FT).
By Theorem 3.1,

o
V=Pexp[ -—-J (T“'A2T+ T"%) d@].

0
We compute

—a—(TV)(TV)—'z OV -1 9T
. 8 298 - 30
aT
= -T{T'4,T T"‘——)T“
( i a6
T
. +_—T—‘
36
= —4,,

so by the uniqueness of solutions to this ordinary differential
equation, there must be some W: M—G independent of 6
such that

, S
V=P exp( - f A, d@-W).
o 0 N

Writing T = T'(r, §) and letting & = O we find that W
=T(r,0), so

g
T(r,8)Vi{r0)= Pexp( — J A,d0 T{r, 0)).
0
Setting » = ry and @ = 6, gives
B
Vire 6o) = T (ro, 6)'P CXP( - J- A, d0 T (ry, O))
(4]

which is precisely the holonomy from 0 to 0 along dM.
Proposition 3.3. For any one-form B and any curvec,

el [5)<on[ )
(i) I—Pexp(J:B) <£§B|exp(£13;).

Proof: Straightforward.
Corollary 3.4: If H is the holonomy along JM then

1=t 1< |Fles] (P

(i)
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T 4 ESTIMATES IN THE RADIAL GAUGE

) We now choose a gauge in which there is no holonomy
in the radial direction. This means that 4 (3/dr} = 0 where r
is the distance to the origin in R*. Define G: R*—U (V) by

Gx)= Pexp( LA )

. where
c.(t)=1x, O<u<l. _
Proposition 4.1: (i) Replacing A by G ~'4G + G ~'dG
(and F by G ~'FG) gives us a radial gauge.
(i1} In this gauge,

Am=£ﬂ

(iii) If C is a constant such that
|F|<C/r Inr
for r>2 and
{4 |<(C/e)Inn3
forr=e=2718-,
|4 |<2C (In Inr)/r.

Proof: (i) and (i) follow from Theorem 3.1. For (iii),
write F = Fdr \d0, so '

A =(J-F°a’r)de°
o]

Since |df ] = 1/rand |F| =

1A|<]ffodr

<£ln In3 + -—-J
Alor

= (C /nlnin3 + (C /7)n Inr
<2C(In InA/r. l

|

then for r>3 we have

!

|Fy|/r, we have

a0 |

1do | + UF(,dr

rdr

that
|

InInr

<K1'
Inr

f trdF
s

Proof: The volume of S ? is 27777, so
[tr AF |

f trAF | <
s s}

<N |
s:
<N 277 2C [{In Inr)/r](C /F-1nr)

— 47NC? Inlnr =

Tlnr
Proposition 4.3: Suppose r»3. If

2C

4 — Bl
rinr’

then there exists a constant K, such that

J. tr4 3 —J. trB?
s} s?

<Ky (In lnr)"

Inr

— N

Proposition 4.2: For r> 3, there exists a constant K, such

Proof: We have
|B]<IB— 4|+ 4]
<2C /rinr + 2C (In Inr)/r
<4C(In Inr)/r
and
A*—B*=A*4—B)+A{A—B)B+({4—B)B?,

SO

4% — B|< 2C 3(4CInlnr)2
rinr r

__96C*(InInr)?

Flar

f trA3~—f trB?
A s3

5. THE HOLONOMY AT INFINITY

In this section, we restrict attention to.S ; for sufficient-
ly large . C,, C,, ..., C,; will be constants independent of r. -

Fix some *“north pole” pS?}, and some great circle I~
from p to — p. If xeS'2 is not on the “equator” S2, let ¢, be
the shorter great arc from + p to x. (There is a unique great
circle in §? pasing through + pand x if x5 4+ p.)Forxin
the “northern hemisphere,” let T {x) be the holonomy along
¢,.Forxinthe “southerﬁ‘ﬁ:emisbhere”, let T (x) be the holon-
omy along I" concatenated with ¢, . T'is discontinuous on the
equator S 2.

Lemma 5.1: There exists a constant C, such that if T, .
T, are the two limiting values of T at a point x in S, then

|T, — T,|<C/Inr.
Proof: Choose a surface Sin S} having area <2irr” and

boundary the union of I~ with the great semicircle from p to
— p through x. Then-

Thus

<N| |4%~B7|
s3

<N 2777 96C 3(In Inr)?/Plnr.

f[FKZm’z C /Plnr =27C /Inr.
S
The holonomy around S'is 7', T 5~
Ty~ T = (1= 175 <[ 1P lexp [ F L
S

We now choose C, so that for large r,
27C (277C ) C,
exp <

!, so by Corollary 3.4,

Inr Inr Inr

Let : S ?—R be the distance to p along S . Let 8 = (6!,
0?)be local coordinates on S 2, extended to S} by requiring 8
to be constant along each c,.

Lemma 5.2: For any xeS ,

“'FT i<

rnr

Proof: We suppose that x ison S 7, that ¢ is taken to be
the great arc from p to x, and that d¢ !, df? are orthonormal
at x. The general case will fillow easily. Note that

|[dO'| = cse(t /r), |dt| =1
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P . —<
i

F=F,dtAd0" + Fydt AdO* + F,,d0 ' Nd6?,

1

2
jr-*n: z(f T“FOdet)dB‘.

i=1

Thus

U;T"FT.<i

i=1Jde,

<2J NZIF | sin(i) dt
0 ¥

<2

‘FOiI de

.
lor

If x is a point in the northern hemisphere (i.e., t <7r/2), '

then we have by Theorem 3.1,

Alx)= —dTT™ '+ T( T“'FT)T“.

If T, is constant, the substituting T'T,, for T leaves (5.3) un- !
changed. It follows that (5.3) is also valid if x is in the south- .

ern hemisphere. Hence we have

Corollary 5.4: (i) |4 +dT T ='|<2C /rur. (i) |dT| |

<C, {In Inr)/r for some constant C,. i
Given 8¢(0, 1), let R be the set of points in S} with
irr — 8 <t <mr + 6, and let

U@)= tlim T({,0) (

1—lwr -

From Corollary 5.4(ii), it follows that there exists a constant .

C, such that'the inequality |
ldU |<Cy(In Inr)/r (5.5)"

holds on R. By Lemma 5.1, we can choose & sufficiently
small that on R,

|U~ T|<2C,/Inr.

We suppose that 2C,/Inr <} so that f: R—u(N ) may be de-

fined by the power series

2 1
=nU"'T= — —(1-=U"'TH"
f ,,;l n ( )
Then
= 1 N n
Al S -
n=1
7 2C| )n
<
,,Z]( Inr
PRl (5.6)
Inr

Let ¢: R—[0, 1] be a smooth function satisfying
1 izl
0 |<l
Define T: RﬁU(‘V) by
T(t,0)="U0)exp[&({t — i7r/8) f11, 6)]

and extend 7 to be a smooth function on S by setting it
equalto Ton S} — R.
Lemma 5.7- Let Vand E be matrix valued functions.

$l(t)=

(53)

(i) If V= ¢” then |[dV |<e " ldE |,
(ii) If |1 — V{<p < 1and E = In ¥, then

|dE|< t

IdVl

Proof: This follows from differentiating the power series
for exp and In.

Lemma 5.8: There exist constants C,, C,, C, such that
on R, ’

() ldri<c, 2

(i) l—-—dt‘<|a’T1< Co

(iii) }: T o l<c7’n lnr.
l—rl

Proof (1)Apply Lemma 5.7(ii) with g = L. {ii) By Lemma
5.7(i),

{dflgldU[e‘ﬂ—}—eV‘idfl+ewld[a5( 7

Then, using (5.5), {5.6), and Lemma 5.8(i),

[dee“C'/'“'(C_,ln Inr n C}ln Inr " Cs 4C|)
r r 6 Inr
C,
——.
Sinr

(iii) Similar, except that the term involving &§ is
absent.
Lemma 5.9: For some C,

f tr(7 " dT)-‘—f tr(f"‘df)3l<C9
s s? »

{In Inr)*

Inr

Proof:

L “tr(T_'dTP T-L}qf-‘ﬁf'

Rt;(ir Ty _ J;tr(f - 'dﬂ‘l

<NL|dTP + Lm(f— 'dT ).

By Lemma 5.8(ii) and 5.8(iii), there exists Cy such that
[tr(T ~'dT | <Cy(1/8Inr){(In Inr)/r]*.

The volume of R is bounded by 477°5, so from Corollary
5.4{ii) and the above,

Ltr(T*'dT)-‘—Ltr(f~‘df)«‘l

<N 4778 [(Cy In Inr)/r)? + 4ar%8 C, (1/81nr){(In Inr)/r)*
<Cy{ln Inr)/Inr.

We now complcte the proof of Theorem 1.1. From
trF? =dtr{AF — 14 %} and

|F{<C/r’lnr,

1t follows that

Roger Schiafly



J-;ftrFI’-i—, tr(AF—~l‘A")l
87 Jw? 87 Js: ’

L
87 Jr \plnp Inr
From Proposition 4.2,
...1_1-[ trF-’-;-_L;J- trd * <C,,1n il
8 Jue 247 s}

Corollary 5.4(i) shows that the hypothesis of Proposition 4.3
is satisfied if B= —d7-T ~',s0 .
(In Ins?

<Cy, :
Inr

—ﬂ-l——;J- Ir}:z«———l—-;J‘ tr(T ~'dT )
87 Jne 247 Js:

By Lemma 5.9,

~—1-;f rFi—n
8 Jne

where n is the integer

<C\; {(In Inry” ,
Inr

J-; (T~ 'dT ).

" S,' .
The proof of Theorem 1.1 is now finished by letting  tend to
infinity

6. AN EXAMPLE

Let T: S *—SU(2) be the standard identification. Let @ ’

be the pull-back to R* of T ~' dT by the radial projection.
The structural equation is
do + * =0.
Let /2 [0, s )>-R be a smooth function satisfying
0 O<rg,
a r>l, )

fin=

for some real number a. Using r for the radial coordinate,

[f{r)ew is awell-defined smooth form on R*, and we defineit to

be a connection on the trivial SU(2) bundle.
We compute

F=f'drho +(f* —flw?,
so FeO (1/7). Also,
Fr=2f*—f)f drhe’

‘has compact support and

‘ L[ orirn —sonar | o’

—— trF2 =
87 Juw 87

= -8—71;3 [ 1) —fz(f)] z-12 volume S

=2a* — 3a%

By varying a, we may obtain any real number.

7. A GENERALIZATION

Theorem 1.1 generalizes to the following situation. Let
G beacompact Lie group and letp: G—U{NV }bea representa-
tion. Let F be the curvature of some connection on some
principal G bundle over R*". Let

¢, = [{—=1)"* /nltrp(F)/27i)".

If the connection extends to a connection on some bundle

" over $?, then the Chern number

' of the associated vector

bundleis f..c,.-This is an integer and is always divisible by
(n — 1)! (see Ref. 7 p. 77 or Ref. 11 p. 156).
Theorem 7.1: Suppose 1 > 1. If there exists a constant C

" such that

Flaee, r>2,
r-lnr

then

is an integer. Any integer value is possible if G = SU(:V } and
N>n.

Proof: The proof requires only minor modifications of
the proof of Theorem 1.1, which we now discuss. According
to the Chern—-Weil theory (Ref. 7, p. 114),

trF"=ndJ tr{A [tF+(t2—1)47]"~'}dr

[§]

1t follows as before that in the radial gauge,

1
J.tr "=nJ-(t2-t)""dtlim tr4 L
R* (¢} rcygin-?

An elementary integration by parts gives

J-_l["_ 1(1 _ I)"_ 1 d[;—‘ [(n _ ”']2

@n -1

Approximating 4 by —d7 T ~' for some smooth T
S*U(N), we find that

is approximated by

— — 1 - ~

=L =1 J t( T~ dT)" .
(2771')" (2)1 - 1)! s

This is an integer because it is the integral that gives Bott

periodicity,”

Ty, _ UV )=Z,

for n<N. The integral is zero if 7> N. = ]

The proof of Theorem 7.1 breaks down if n = 1+In or-
der to estimate the holonomy around a closed curve near
infinity, we expressed the curve as the boundary of a surface
where the curvature was small and used Corollary 3.4. But
the sphere of radius in R*" is simply connected only if n > 1.

The following theorem shows that Theorem 7.1 actual-
ly fails if n = 1.

Theorem 7.2: Let Fbe a two-form on R* with values in
some Lie algebra. Then F is the curvature of some connec-

tion on a principal bundle over R*.
Proof: Write

F=f{x,y)dx Ndy.

Then Fis the curvature of the connection

Alx, p)= (f SIxLy) dx') dy.
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