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A Chern number for gauge fields on ]R4
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Let Fbe the curvature of some connection on some principal bundle over ]R4.I show that if F
decays as fast as (rlnr) -I as r tends to infinity, then

1 f '-, trF-
811"

is an integer. If F decays like r-2, any real value is possible. There is an analogous statement for
]R2n{n > 2), although it fails for R2•

PACS numbers: 11.l0.Np

1. INTRODUCTION

Let Gbe a compact Lie group and let p: G-U(N) be a
representation. Let Fbe the curvature of some connection on
some principal G bundle over Sol. The Chern number of the
associated vector bundle is

1 i 2C2 =-, trp(F) .
81/ S' •

I •

According to the theory of characteristic classes, this quanti-
ty is always an integer.

Now consider the curvature F of a connection on a prin-
cipal G bundle over JR4.In this paper, we prove

Theorem 1.1: If

IF I<C /I.21nr, r;;.2

for some constant C, then

J,i trp(Ff
81/ R'

}

is an integer.
This formula is of interest in quantum field theory be-

cause the curvature F is the same as a Yang-Mills (gauge)
field over Euclidean space. For discussions of related mat-
ters, see Refs. 1,2, and 3.

If Gis abelian or N = 1, the integer obtained in Theo-
rem 1.1must be zero. IfG = SU(N)(N> 1),any integer value
is possible.

It is not known whether the hypothesis of Theorem 1.1
can be relaxed to the energy SR' IF 1

2 being finite, although
this is suggested by Refs. 2, 4, and 5. However, it is shown in
Sec. 6 that (1I8~)S R.p(F)2 may not be an integer if we as-
sume only that IF 1 <C fr. This example is equivalent to the
one given in Ref. 5, and has infinite energy.

Theorem 1.1 is proved in Sees. 2, 3, 4, and 5. Section 3
gives a holonomy formula similar to the one in Ref. 6 and
may be read independently of the rest of the paper. Section 7
shows how to handle dimensions other than four.

2. OUTLINE OF THE PROOF

For the proof of Theorem 1.1 it suffices to consider the
associated U(N) bundle. Hence we may, without loss of gen-
erality, take G = U(N) and suppress mention of p.

Relati~'e to some trivilization of the bundle, the connec-

tion A is a one-form on JR4with values in u(N). The curvature

F=dA +A2

is a two-form on JR4with values in u(N). The Chern-Weil
formalism (Ref. 7, p. 114) tells us that

trF2 = d tr(AF _ ~ 3).

LetS; be the sphere of radius rin R4
• If IF I<C frlnr. Then

trF2 is integrable on JR4.By Stokes' theorem,

J, r trF2 = limJ, r tr(AF _ ~ 3).
81/ JR' r-0081T- Js;
Given E> ° and r sUftlciently large, we will show that

there exists a smooth map T: S;-U(N) such that

IJ, ( tr[ AF - ~ 3 -1(T -I dTfll <.!...
811" Js; . 2

If we choose r large enough such that

IJ, (trF2 - J, ( tr(AF -1A 3) I <.!..,
811" JR' 81T- Js; 2

then it will follow that

1

1 1 -~'.' l' Is - - I-, trF-- ~ tr(T-1dTf <E.
8'i'1 R4 241/ s;

We now recall a special case of Batt's work on periodic-
ity in K-theorl.

Theorem 2.1: For N>2 we have an isomorphism
1T3U(N)~.z given by assigning to a smooth map T:S 3~U(N)
the integer

--..!., ( tr(T -I dT)3.
241/ Js'
Thus for E> 0 there exists an integer n such that

I~ ( trF2
- n\ <E.

81T Jli'

aTHE HOLONOMY PROPAGATOR
Let Mbe the sector in;R2 described by polar coordinates

(r, 0) with O<r<ro and 0<0<00, Suppose we have a connec-
tion A on the trivial principal G bundle. For this paper we
can assume that Gis U(N), although Theorems 3.1 and 3.2
hold for any Lie group. A is a one-form on M with values in



u(N). The curvature is F = dA + A 2.

For xsil,{ let c,.: [0, 1]-.M be the curve

c.(t) = lX, O<l< 1.

A section u: M-.ff of the associated vector bundle is paral-
lel along Cx iff it satisfies

c:(du +Au) = O.

The fundamental solution to this differential equation is the;
path ordered exponential

pexp( - LA).

u(x) = pexp( - i:'U(Ol}
P exp - (Sc,A ) is called the holonomy from ° to x along c~.It
may also be defined as a product integral (Ref. 9, p. 15).

Theorem 3.1: If

T(x) = pexp( - LA )
then

A (x) = -dTi-1 + T(LT-.1FT )T-1
•

Proof Plugging in the vector a lar, we get

A (i.)= _ aT T-t,
ar ar

which foll0'Ysfrom the definition ofT The vector a lae gives'

A2 = - ~~ T-1 + T(f;' iFoTdr)T-t,

where

A =A1 dr+A2de,
F=FodrAde.

To prove this, we first observe that

_ aAI =~(aT T-1)

ae ae ar

= a2T T-1 _ aT T-laT T-1.
aear ar ae

:r [T - I(A 2+ ~~ T - I) T ]

= _ T-laT T-1A,T + T-t aA~ T + T-1A, aT
ar - ar - ar

_ T-1aT T-laT + T-
'

a~T
ar ae arae

= T-1A,A,T + T-1 aAl T- ar
- T-IA2A T- T-' aA, T

I ae
='T-IFoT.

Continuity of A and dT·T -I at 0 require that

~imA, = 0,
r--.o -

I· aT 70-1 0
Im-l =,
r-o ae

T-'(A, + aT T-I)r= rT-1F. Tdr- ae Jo 0

which gives the formula we wanted. ,
Theorem 3.2: The holonomy from 0 to 0 along aM is

given by the e-ordered exponential

pexp( - JMT-1FT).

Proof Let

Vir, e) =pexp(iO fT-'FoTdrde)

with the ordering over e, so

V(rOJ eo) = P exp( - J'J T -1FT ).

By Theorem 3.1,

v=pexp[ - iO"(T-1A2T+ T-I~~)de].

We compute

~(TV)(TV)-I = Tav V-'T-1 + aT T-1
ae "",oe ae

= - T(T-1A2T+ T-l~~)T-1

+ aT T-t

ae
= -A2,

so by the uniqueness of solutions to this ordinary differential
equation, there must be some W:M-.G independent of e
such that

TV= pexp(~iOA2 d~'W).

Writing T = T(r, e) and letting e = 0 we find that W
= T(r, 0), so

T(r, e )V(r, e) =P exp( ~ iOA~ de T(r, 0)).

Setting r = roand e = eo gives

V(ro' eo) = T(ro, ecr Ip exp( - iO"A2de T(ro, 0))

which is precisely the holonomy from 0 to 0 along aM.
Proposition3.3. For anyone-form B and any curve c,

(i) Ipexp(lB )!<exp(lIBI)
(ii) II- P exp(lB ) I <liB lexp(llB I)-
Proof Straightforward.
Corollary 3.4: If H is the holonomy along aM then



4. ESTIMATES IN THE RADIAL GAUGE

We now choose a gauge in which there is no holonomy
in the radial direction. This means that A (qlar) = 0 where r
is the distance to the origin in R4

• Define G: ]R4-..U(N) by

where

c,(t) = tx, O<t< 1.

Proposition 4.1: (i) Replacing A by G ~ IAG + G - I dG
(and F by G - IFG) gives us a radial gauge.

(ii) In this gauge,

A(x)= LF.
(iii) If C is a constant such that

lFl<C /r Inr

for r>2 and

IA I«C Ie) In In3
for r = e = 2.718 .." then for r> 3 we have

IA I<2C (1n Inr)/r.

Proof (i) and (ii) follow from Theorem 3.1. For (iii),
write F = Fodr AdO, so

A = (Lpo dr) dO.
Since IdO I = 1/r and IF I = lFollr, we have

IA 1<IIpodrlldO! + Ifpodr!ldol
C lirc<-In In3 + - -,- r dr
r r e rlnr

= (C Ir)ln In3 + (C Ir)ln Inr
<2C (In Inr)lr.

Proposition 4.2: For r> 3, there exists a constant K I such
that

Ii I lnlnr
trAP <K

"
--.

s~ Inr

Proof The volume of S; is 21T?, so

II/rAP I <I;'tr AF I

<NIr IIPI
<N21T? 2C [(In Inr)!r](C Ir2lnr)

= 41TNC 2 In Inr.
Inr

Proposition 4.3: Suppose r>3. If

IA -BI< 2C,
rlnr

then there exists a constant K2 such that

Ii A 3 i B 3\ K (In Inrftr - tr <; ,'---
s; s; - Inr

Proof We have

IBI<;IB-AI + IA I
<;2C /rlnr + 2C (In Inr)!r
<;4C(ln Inr)lr

IA 3 _ B ·~I<; 2C 3(4C In Inr)2
rlnr r

96C 3(In lnrf
r1Inr

IltA 3 -l;trB3
\ <;NI;'A 3 - B31

<N 21T? 96C 3(ln Inr)2/?lnr.

In this section, we restrict attention to S; for sufficient-
ly large r. CI, C2, ••• , CI3 will be constants independent of r ..

Fix some "north pole" pES;, and some great circle r
fromp to - p. If xES; is not on the "equator" S;, let c" be
the shorter great arc from ± p to x. (There is a unique great
circle in S; pasing through ±p and x if x =1= ±p.) For x in
the "northern hemisphere/' let T(x) be the holonomy along
c". For x in the "southern'!1'emisphere", let T (x) be the holon-
omy along r concatenated with c". Tis discontinuous on the
equator S;.

Lemma 5.1: There exists a constant C1 such that if TI,

T2 are the two limiting values of Tat a point x in S;, then

ITI - T21<C/lnr.

Proof Choose a surface Sin S; having area <2m.2 and
boundary the union of r with the great semicircle from p to
- p through x. Then .

lIP I<21Tr C Irlnr = 21TCIlnr.

The holonomy around as is T, T;- I, so by Corollary 3.4,

IT, - T21 = 11- TIT 2-
II<llPlexp llPl.

We now choose CI so that for large r,

21TC (21TC) C,--exp -- <-.
Inr lnr Inr

Let t: S ;-..R be the distance to p along S;. Let 0 = (0 I,

(
2

) be local coordinates on S;, extended to S; by requiring 0
to be constant along each c".

Lemma 5.2: For any xES;,

I r T-'FTI<~·J. rlnr

Proof We suppose that x is on S;, that c, is taken to be
the great arc from p to x, and that dO I, dO 2 are orthonormal
at x. The general case will fillow easily. Note that

IdO il = csc(t Ir), Idt I = 1.



fT-1FT= it{CT-IFoiTdt )dO
i
.

Thus

1fT-1FT I~itJ.\Foil dt

,Jr", (t)
~2Jo IFI sin ~ dt

C~2-,-·r.
rlnr

If x is a point in the northern hemisphere (i.e., t < 1Tr/2),
then we have by Theorem 3.1,

A (x) = -dTT-1 + T(LT-'FT )T-I
• (5.3)

If T..l is constant, the substituting TT..J for T leaves (5.3) un-
changed. It follows that (5.3) is also valid if x is in the south-
ern hemisphere. Hence we have

Corollary 5.4: (i).IA + dT T -II ~2C /rlnr. (ii) IdT I
~C2 (In Inr)/r for some constantC2·

Given 8E(0, 1), let R be the set of points in S; with
~1Tr- 8 < t <~i7r+ 8, and let

UfO) = lim T(t,O).
I--!1:"t'-

From Corollary 5.4(ii), it follows that there exists a constant
C3 such thafthe inequality

IdU I~C3(ln Inr)!r (5.5)

holds on R. By Lemma 5.1, we can choose 8 sufficiently
small that on R,

IV - TI~2Ca/lnr.

We suppose that 2Ca/lnr < ~so thatf R-+u(N) may be de- .
fined by the power series

j=lnU-1T= - t..!..(1-U-1T)" .
•, = III

Then

Ijl~ f ..!..Il - U-'T In
n=11l

~!(~)"
n= I Inr

~ 4CI. (5.6)
Inr

Let ¢J: R-+[O, I] be a smooth function satisfying

1
¢J (t) = ° It I;;;.I,

It I~~·. -, '.

Define T: R-U(N) by

T(t, ej = U(e)exp[¢((t - ~17r)!8)1(t, e)]

and extend Tto be a smooth function on S~by setting it
equal to Ton S: - R.

Lemma 5. 7: Let Vand E be matrix valued functions.

(i) If V = e/; then IdV I ~e/; IdE j,
(ii) If II - V-j <p. < I and E = In V, then

IdE 1~__ t_ldVI.
I-p.

Proof This follows from differentiating the power series
for exp and In.

Lemma 5.8: There exist constants C~, CM C7 such that
onR,

Proof (i)Apply Lemma 5.7(ii) withp. = ~.(ii) By Lemma
5.7(i),

IdTI~ldUlelf: + elf1ld/l + elf1ld [ib (t -8~17r)] I ill.
Then, using (5.5), (5.6), and Lemma 5.8(i),

IdT-I 4c'/lnr(c In Inr C In Inr Cs 4C,)~e 3--+ 4--+---. r r 8 Inr
~.-S.-.

81nr
(iii) Similar, except that the term involving 8 is

absent.
Lemma 5.9: For some C9,

I ' tr(T -I di)3 - , tr(T - t dTj' I~C9 (In Inr)2 .
Js; Js; lnr

lit(T-1dT)3 ~L;tr(~-'dT)31

= lit~(T-'dT)3 - itr(T-'dT)3!

~NildTl3 + iltr(T-'dTfl.

By Lemma 5.8(ii) and 5.8(iii), there exists Cx such that

Itr(T -ldTfl ~Cx(l/8Inr)[(ln Inr)/rf·

Thevolume of R is bounded by 417r28, so from Corollary
5.4(ii) and the above,

li/r(T-'dTf - i/r(T-'dT)'\

~N 41Tr8 [(Czln Inr)!r]3 + 417r28 Cx (l/8Inr)[(ln Inr)/rf

~CI(ln Inrf/lnr.
We now complete the proof of Theorem 1.1. From

trF2 = d tr(AF - lA') and3

IFI<C /r21I1r,

it follows that



I~ r trF1_~i tr(AF-iA-')!
8,,)1\' 8iT- s;

N l~( C)2 'd CIO<-, -,- 2"p p =-.
8iT-, p-Inp Inr

From Proposition 4.2,

I~ r trF1 + _1_, r trA·' I <C11
1n Inr.

8,,- )w 24iT- Js; Inr
Corollary 5.4(i) shows that the hypothesis of Proposition 4.3
is satisfied if B = - dT.T -I, so

I~ r lrF2--1-,f tr(T-1dTj'l<cI2(lnlnr)2
871- JIl' 24,,- s; Inr

By Lemma 5.9,

I~ r trF1_11]<Cu(lnlnrI1,
8iT- JR' Inr

where n is the integer

_1_., r lr(T-1dTj.'.
24 iT- Js;

The proof of Theorem 1.1 is now finished by letting r tend to
infinity

6. AN EXAMPLE

Let T: S3_5U(2) be the standard identification. Let w
be the pull-back to R~of T -I dTby the radial projection.
The structural equation is

dw + w2 = O.
Letf [0, 00 )::-R be a smooth function satisfying

o O<r<!,
I(r) =

a r;;;>l,

for some real number a. Using r for the radial coordinate,
l(r)8 is a well-defined smooth form on R\ and we define it to
be a connection on the trivial SU(2) bundle.

We compute

F=l'drl\.w + (/2 _ l)w2,

so FEO(IIr). Also,

F2 = 2(F - 1)1' dr I\. w-'
has compact support and

...!, f trF2 = ...!, f'" 21'(rHF(r) - I(r)) dr f trw-'
811" JR' 811" Jo Js'

= 8~ [y3(r) - F(r)] 0.12 volumeS3

= 2a3
- 3a2

,

By varying a, we may obtain any real number.

7. A GENERALIZATION

Theorem 1.1 generalizes to the foJIowing situation. Let
Gbeacompact Lie group and letp: G-U(N) bea representa-
tion. Let F be the curvature of some connection on some
principal G bundle over R2

". Let

c" = [(- 1)" + I/n ]tr(p(F)l2iTi)".

If the connection extends to a connection on some bundle

over S2", then the Chern number10 of the associated vector
, bundle is fj{'''c" .~This is an integer and is always divisible by

(II - I)! (see Ref. 7 p. 77 or Ref. II p. 156).
Theorem 7.1: Suppose 11 > 1. If there exists a constant C

!. such that

CIF I<-'-I -, r;;. 2,
r nr

I f c"
(n - I)! )1('"

is an integer. Any integer value is possible if G == SU/X) and
I N;;'l1.

Proof The proof requires only minor modifications of
the proof of Theorem 1.1, which we now discuss. According
to the Chern-Weil theory (Ref. 7, p. 114),

trF"=nd ftr!A [tF+(t2_t)A21"-ljdt.

It follows as before that in the radial gauge,

f trF"=11((t2_t)"-ldtlim f trA2n-l•
JH." Jo ,.-oc)S;,,-1

(tll-I(I _ t)"-I dt-:= [(n - I}!f.
Jo (211 - I)!

Approximating A by - dT T - I for some smooth f:
S ;-U(N), we find that

1 f c"
(11- I)! JR'"

is approximated by

--_1 -Ll/_-I)! 1: - -, Itr(T-' dT)-"- .
(2"i)" (211 -: l)l s;"- 1

This is an integer because it is the integral that gives Bott
periodicity,x

"211_ 1 U(N)~Z,

for 1l<N. The integral is zero if 11> N. •
The proof of Theorem 7.1 breaks down if n = Ldn or-

der to estimate the holonomy around a closed curve near
infinity, we expressed the curve as the boundary of a surface
where the curvature was small and used Corollary 3.4. But
the sphere of radius r in R2

" is simply connected only if n > I.
The following theorem shows that Theorem 7. I actual-

ly fails if 11 = I.
Theorem 7.2: Let Fbe a two-form on R2 with values in

some Lie algebra. Then F is the curvature of some connec-
tion on a principal bundle over H2•

Proof Write

A (x, y) = (f.f(.\:', Yl dX') dy.



This paper was motivated by a question raised by I. M.
Singer. I would like to thank him for many interesting
conversations.

'M. F. Atiyah, N. J. Hitchin, L M. Singer, "Self·duality in 425-46 four·
dimensional Riemannian geometry," Proc. R. Soc. London A 362, (1978).

1A. A. Belavin, A. M. Polyakov, A. S. Schwanz. Yu. S. Tyupkin. "?seudo·
particle solutions of the Yang-Mills equations," Phys. Lett B 59 85-87
(1975). .
'K. K. Uhlenbeck, "Removable singularities of Yang-Mills fields." Bull.
Amer. Math. Soc. (new ser. 1 579-581 (1979).

4E. C. Marino and J. A. Swieca, "Non·integer topological charge and infi·

niteness of action;' P. U. c., Nota Cientifica 7/78.
'F. A. Schaposnik. J. E. Solomin "Gauge field singularities and noninteger
topological charge;' J. Math. Phys. 20, 2110-2114 (1979).

('L. Schlesinger, "Parallelverschiebung und Krummingstensor," Math.
Ann. 99, 413-434 (1928).

7S. S. Chern. "Complex Manifolds without Potential Theory, 2nd Ed.
Springer, New York, 1979.

"R. Bolt. R. Seeley, "Some remarks on the paper of Calli as," Commun.
Math. I'hys. 62. 235-245 (1978).

"E. Nelson, Topics in Dynamics,I: Flows (princeton U. P., Princeton, N. J.,
1970).

'oJ. Milnor and J. StasheffCharacteristic Classes (princeton U. P., Prince·
ton. N. J., 1974).

"I'. Griffiths and J. Adams Topics in Algebraic and Analytic Geometry
Princeton U. P., Princeton, N. J .• 1974.


