JMPIA,810837M0840

A Chern number for gauge fields on \mathbb{R}^4

R. Schlafly

Department of Mathematics, University of Chicago, 5734 University Avenue, Chicago, Illinois 60637

(Received 22 October 1980; accepted for publication 24 April 1981)

Let F be the curvature of some connection on some principal bundle over \mathbb{R}^4 . I show that if F decays as fast as $(r^2 \ln r)^{-1}$ as r tends to infinity, then

$$\frac{1}{8\pi^2}\int \mathrm{tr}F$$

is an integer. If F decays like r^{-2} , any real value is possible. There is an analogous statement for $\mathbb{R}^{2n}(n > 2)$, although it fails for \mathbb{R}^2 .

PACS numbers: 11.10.Np

2

1. INTRODUCTION

Let G be a compact Lie group and let $\rho: G \rightarrow U(N)$ be a representation. Let F be the curvature of some connection on some principal G bundle over S^4 . The Chern number of the associated vector bundle is

$$c_2 = \frac{1}{8\pi^2} \int_{S^*} \operatorname{tr} \rho(F)^2$$

According to the theory of characteristic classes, this quantity is always an integer.

Now consider the curvature F of a connection on a principal G bundle over \mathbb{R}^4 . In this paper, we prove

Theorem 1.1: If

 $|F| \leq C/r^2 \ln r, r \geq 2$

for some constant C, then

$$\frac{1}{3\pi^2}\int_{\mathbf{R}^4}\mathrm{tr}\rho(F)^2$$

is an integer.

This formula is of interest in quantum field theory because the curvature F is the same as a Yang-Mills (gauge) field over Euclidean space. For discussions of related matters, see Refs. 1, 2, and 3.

If G is abelian or N = 1, the integer obtained in Theorem 1.1 must be zero. If G = SU(N)(N > 1), any integer value is possible.

It is not known whether the hypothesis of Theorem 1.1 can be relaxed to the energy $\int_{\mathbb{R}^4} |F|^2$ being finite, although this is suggested by Refs. 2, 4, and 5. However, it is shown in Sec. 6 that $(1/8\pi^2) \int_{\mathbb{R}^4} \rho(F)^2$ may not be an integer if we assume only that $|F| \leq C/r^2$. This example is equivalent to the one given in Ref. 5, and has infinite energy.

Theorem 1.1 is proved in Secs. 2, 3, 4, and 5. Section 3 gives a holonomy formula similar to the one in Ref. 6 and may be read independently of the rest of the paper. Section 7 shows how to handle dimensions other than four.

2. OUTLINE OF THE PROOF

For the proof of Theorem 1.1 it suffices to consider the associated U(N) bundle. Hence we may, without loss of generality, take G = U(N) and suppress mention of ρ .

Relative to some trivilization of the bundle, the connec-

tion A is a one-form on \mathbb{R}^4 with values in $\mathfrak{u}(N)$. The curvature

$$F = dA + A^2$$

is a two-form on \mathbb{R}^4 with values in u(N). The Chern–Weil formalism (Ref. 7, p. 114) tells us that

$$trF^2 = d tr(AF - \frac{1}{3}A^3).$$

Let S_r^3 be the sphere of radius r in \mathbb{R}^4 . If $|F| \leq C/r^2 \ln r$. Then tr F^2 is integrable on \mathbb{R}^4 . By Stokes' theorem,

$$\frac{1}{8\pi^2} \int_{\mathbf{R}^4} \text{tr} F^2 = \lim_{r \to \infty} \frac{1}{8\pi^2} \int_{S^3_r} \text{tr} (AF - \frac{1}{3}A^3).$$

Given $\epsilon > 0$ and r sufficiently large, we will show that there exists a smooth map $\widetilde{T}: S^3 \to U(N)$ such that

$$\left|\frac{1}{8\pi^2}\int_{S_r^3} tr[AF - \frac{1}{3}A^3 - \frac{1}{3}(\tilde{T}^{-1}d\tilde{T})^3]\right| < \frac{\epsilon}{2}.$$

If we choose r large enough such that

$$\left|\frac{1}{8\pi^2}\int_{\mathbf{R}^4} \operatorname{tr} F^2 - \frac{1}{8\pi^2}\int_{S^2_{\tau}} \operatorname{tr}(AF - \frac{1}{3}A^3)\right| < \frac{\epsilon}{2},$$

then it will follow that

$$\frac{1}{2\pi^2}\int_{\mathbf{R}^4}\mathrm{tr}F^2-\frac{1}{24\pi^2}\int_{S^3_{\tau}}\mathrm{tr}(\widetilde{T}^{-1}\,d\widetilde{T})^3\Big|<\epsilon.$$

We now recall a special case of Bott's work on periodicity in K-theory⁸.

Theorem 2.1: For $N \ge 2$ we have an isomorphism $\pi_3 U(N) \simeq \mathbb{Z}$ given by assigning to a smooth map $\tilde{T}: S^3 \to U(N)$ the integer

$$\frac{1}{4\pi^2}\int_{S^3}\operatorname{tr}(\tilde{T}^{-1}\,d\tilde{T})^3.$$

Thus for $\epsilon > 0$ there exists an integer *n* such that

$$\left|\frac{1}{8\pi^2}\int_{\mathbb{R}^3} \mathrm{tr} F^2 - n\right| < \epsilon.$$

Hence $(1/8\pi^2) \int_{\mathbb{R}^4} tr F^2$ must be an integer.

3. THE HOLONOMY PROPAGATOR

Let *M* be the sector in \mathbb{R}^2 described by polar coordinates (r, θ) with $0 \le r \le r_0$ and $0 \le \theta \le \theta_0$. Suppose we have a connection *A* on the trivial principal *G* bundle. For this paper we can assume that *G* is U(N), although Theorems 3.1 and 3.2 hold for any Lie group. A is a one-form on *M* with values in

© 1981 American Institute of Physics

 $\mathfrak{u}(N)$. The curvature is $F = dA + A^2$.

For $x \in M$ let $c_x : [0, 1] \rightarrow M$ be the curve

$$c_x(t) = tx, \quad 0 \leq t \leq 1.$$

A section $u: M \rightarrow \mathbb{C}^N$ of the associated vector bundle is parallel along c_x iff it satisfies

$$c_x^*(du + Au) = 0.$$

The fundamental solution to this differential equation is the path ordered exponential

 $P\exp\left(-\int_{c_{\star}}A\right).$

If u is parallel along c_x then

$$u(x) = P \exp\left(-\int_{c_x} A \cdot u(0)\right).$$

 $P \exp - (f_c A)$ is called the holonomy from 0 to x along c_x . It may also be defined as a product integral (Ref. 9, p. 15).

Theorem 3.1: If

$$T(x) = P \exp\left(-\int_{c_x} A\right)$$

then

$$A(x) = -dTT^{-1} + T\left(\int_{c_x} T^{-1}FT\right)T^{-1}$$

Proof: Plugging in the vector $\partial / \partial r$, we get

 $A\left(\frac{\partial}{\partial r}\right) = -\frac{\partial T}{\partial r}T^{-1},$

which follows from the definition of T The vector $\partial / \partial \theta$ gives

$$A_2 = -\frac{\partial T}{\partial \theta} T^{-1} + T \left(\int_0^r (-r_0 T dr) T^{-1} \right),$$

where

$$A = A_1 \, dr + A_2 \, d\theta$$

$$F=F_0dr\wedge d\theta.$$

To prove this, we first observe that

$$\frac{\partial A_1}{\partial \theta} = \frac{\partial}{\partial \theta} \left(\frac{\partial T}{\partial r} T^{-1} \right)$$
$$= \frac{\partial^2 T}{\partial \theta \, \partial r} T^{-1} - \frac{\partial T}{\partial r} T^{-1} \frac{\partial T}{\partial \theta} T^{-1}.$$

Hence

$$\frac{\partial}{\partial r} \left[T^{-1} \left(A_2 + \frac{\partial T}{\partial \theta} T^{-1} \right) T \right]$$

$$= -T^{-1} \frac{\partial T}{\partial r} T^{-1} A_2 T + T^{-1} \frac{\partial A_2}{\partial r} T + T^{-1} A_2 \frac{\partial T}{\partial r}$$

$$-T^{-1} \frac{\partial T}{\partial r} T^{-1} \frac{\partial T}{\partial \theta} + T^{-1} \frac{\partial^2 T}{\partial r \partial \theta}$$

$$= T^{-1} A_1 A_2 T + T^{-1} \frac{\partial A_2}{\partial r} T$$

$$-T^{-1} A_2 A_1 T - T^{-1} \frac{\partial A_1}{\partial \theta} T$$

$$= T^{-1} F_n T.$$

Continuity of A and $dT \cdot T^{-1}$ at 0 require that

$$\lim_{r \to 0} A_2 = 0,$$
$$\lim_{r \to 0} \frac{\partial T}{\partial \theta} T^{-1} = 0,$$

so

$$T^{-1}\left(A_{2}+\frac{\partial T}{\partial \theta}T^{-1}\right)T=\int_{0}^{r}T^{-1}F_{0}T\,dr$$

which gives the formula we wanted.

Theorem 3.2: The holonomy from 0 to 0 along ∂M is given by the θ -ordered exponential

$$P \exp\left(-\int_{M} T^{-1}FT\right).$$
Proof: Let
$$(c^{\theta}, c^{\theta})$$

$$V(r,\theta) = P \exp\left(\int_0^\infty \int_0^r T^{-1} F_0 T \, dr \, d\theta\right)$$

with the ordering over θ , so

$$V(r_0, \theta_0) = P \exp\left(-\int_M T^{-1}FT\right).$$

By Theorem 3.1,

$$V = P \exp\left[-\int_0^{\theta_0} \left(T^{-1}A_2T + T^{-1}\frac{\partial T}{\partial \theta}\right)d\theta\right]$$

We compute

1

$$\frac{\partial}{\partial \theta} (TV)(TV)^{-1} = T \frac{\partial V}{\partial \theta} V^{-1} T^{-1} + \frac{\partial T}{\partial \theta} T^{-1}$$
$$= -T \left(T^{-1} A_2 T + T^{-1} \frac{\partial T}{\partial \theta} \right) T^{-1}$$
$$\cdot + \frac{\partial T}{\partial \theta} T^{-1}$$
$$= -A_2,$$

so by the uniqueness of solutions to this ordinary differential equation, there must be some $W: M \rightarrow G$ independent of θ such that

$$TV = P \exp\left(-\int_0^\theta A_2 \, d\theta \cdot W\right).$$

Writing $T = T(r, \theta)$ and letting $\theta = 0$ we find that W = T(r, 0), so

$$T(r, \theta)V(r, \theta) = P \exp\left(-\int_0^\theta A_2 d\theta T(r, 0)\right).$$

Setting $r = r_0$ and $\theta = \theta_0$ gives

$$V(r_0, \theta_0) = T(r_0, \theta_0)^{-1} P \exp\left(-\int_0^{\theta_0} A_2 \, d\theta \, T(r_0, 0)\right)$$

which is precisely the holonomy from 0 to 0 along ∂M . *Proposition 3.3.* For any one-form *B* and any curve *c*,

(i) $|P \exp\left(\int_{c} B\right)| \leq \exp\left(\int_{c} |B|\right)$ (ii) $|1 - P \exp\left(\int_{c} B\right)| \leq \int_{c} |B| \exp\left(\int_{c} |B|\right)$. *Proof*: Straightforward.

Corollary 3.4: If H is the holonomy along ∂M then

$$|1-H| \leq \int_{\mathcal{M}} |F| \cdot \exp \int_{\mathcal{M}} |F|.$$

4. ESTIMATES IN THE RADIAL GAUGE

We now choose a gauge in which there is no holonomy in the radial direction. This means that $A(\partial/\partial r) = 0$ where r is the distance to the origin in \mathbb{R}^4 . Define $G: \mathbb{R}^4 \rightarrow U(N)$ by

$$G(x) = P \exp\left(-\int_{c_x} A\right),$$

where

$$c_x(t) = tx, \quad 0 \leq t \leq 1.$$

Proposition 4.1: (i) Replacing A by $G^{-1}AG + G^{-1}dG$ (and F by $G^{-1}FG$) gives us a radial gauge.

(ii) In this gauge,

$$A(x) = \int_{c_x} F.$$

(iii) If C is a constant such that

 $|F| \leq C/r^2 \ln r$

for $r \ge 2$ and

 $|A| \leq (C/e) \ln \ln 3$

for r = e = 2.718..., then for $r \ge 3$ we have

$$|A| \leq 2C (\ln \ln r)/r.$$

Proof: (i) and (ii) follow from Theorem 3.1. For (iii), write $F = F_0 dr \wedge d\theta$, so

 $A = \left(\int_0^r F^0 \, dr\right) d\theta.$

Since $|d\theta| = 1/r$ and $|F| = |F_0|/r$, we have

$$|A| \leq \left| \int_{0}^{e} F_{0} dr \right| |d\theta| + \left| \int_{e}^{r} F_{0} dr \right| |d\theta|$$
$$\leq \frac{C}{r} \ln \ln 3 + \frac{1}{r} \int_{e}^{r} \frac{C}{r^{2} \ln r} r dr$$
$$= (C/r) \ln \ln 3 + (C/r) \ln \ln r$$
$$\leq 2C (\ln \ln r)/r.$$

Proposition 4.2: For $r \ge 3$, there exists a constant K_1 such that

$$\left| \int_{S_{r}^{3}} \operatorname{tr} AF \right| \leq K_{1} \cdot \frac{\ln \ln r}{\ln r}.$$

Proof: The volume of S_{r}^{3} is $2\pi r^{3}$, so

$$\left| \int_{S_{r}^{3}} \operatorname{tr} AF \right| \leq \int_{S_{r}^{3}} |\operatorname{tr} AF|$$

$$\leq N \int_{S^{3}} |A| |F|$$
$$\leq N 2\pi r^{3} 2C [(\ln \ln r)/r] (C/r^{2} \ln r)$$
$$= 4\pi N C^{2} \frac{\ln \ln r}{r}$$

ln/

Proposition 4.3: Suppose $r \ge 3$. If

$$|A-B|\leqslant \frac{2C}{r\ln r},$$

then there exists a constant K_2 such that

$$\left|\int_{S_{r}^{3}} \operatorname{tr} A^{3} - \int_{S_{r}^{3}} \operatorname{tr} B^{3}\right| \leq K_{2} \cdot \frac{(\ln \ln r)^{2}}{\ln r}$$

Proof: We have

 $|B| \leq |B - A| + |A|$ $\leq 2C / r \ln r + 2C (\ln \ln r) / r$ $\leq 4C (\ln \ln r) / r$

and

so

$$A^{3} - B^{3} = A^{2}(A - B) + A(A - B)B + (A - B)B^{3}$$

$$A^{3} - B^{3} | \leq \frac{2C}{r \ln r} \left\{ 3 \left(4C \frac{\ln \ln r}{r} \right)^{2} = \frac{96C^{3} (\ln \ln r)^{2}}{r^{3} \ln r} \right\}$$

Thus

$$\left| \int_{S_{r}^{3}} \operatorname{tr} A^{3} - \int_{S_{r}^{3}} \operatorname{tr} B^{3} \right| \leq N \int_{S_{r}^{3}} |A^{3} - B^{3}| \\ \leq N 2\pi r^{3} 96C^{3} (\ln \ln r)^{2} / r^{3} \ln r.$$

5. THE HOLONOMY AT INFINITY

In this section, we restrict attention to S_r^3 for sufficiently large r. C_1 , C_2 , ..., C_{13} will be constants independent of r.

Fix some "north pole" $p \in S_r^3$, and some great circle Γ from p to -p. If $x \in S_r^3$ is not on the "equator" S_r^2 , let c_x be the shorter great arc from $\pm p$ to x. (There is a unique great circle in S_r^3 passing through $\pm p$ and x if $x \neq \pm p$.) For x in the "northern hemisphere," let T(x) be the holonomy along c_x . For x in the "southern hemisphere", let T(x) be the holonomy along Γ concatenated with c_x . T is discontinuous on the equator S_r^2 .

Lemma 5.1: There exists a constant C_1 such that if T_1 , T_2 are the two limiting values of T at a point x in S_r^2 , then

$$|T_1 - T_2| \leqslant C_1 / \ln r.$$

Proof: Choose a surface S in S_r^3 having area $\leq 2\pi r^2$ and boundary the union of Γ with the great semicircle from p to -p through x. Then

$$\int_{S} |F| \leq 2\pi r^2 C / r^2 \ln r = 2\pi C / \ln r.$$

The holonomy around ∂S is $T_1 T_2^{-1}$, so by Corollary 3.4,

$$|T_1 - T_2| = |1 - T_1 T_2^{-1}| \le \int_S |F| \exp \int_S |F|.$$

We now choose C_1 so that for large r,

$$\frac{2\pi C}{\ln r} \exp\left(\frac{2\pi C}{\ln r}\right) \leq \frac{C_1}{\ln r}.$$

Let $t: S_r^3 \to \mathbb{R}$ be the distance to p along S_r^3 . Let $\theta = (\theta^1, \theta^2)$ be local coordinates on S_r^2 , extended to S_r^3 by requiring θ to be constant along each c_x .

Lemma 5.2: For any $x \in S_r^3$,

$$\left|\int_{c_{\star}} T^{-1} FT\right| \leq \frac{2C}{r \ln r}.$$

Proof: We suppose that x is on S_r^2 , that c_x is taken to be the great arc from p to x, and that $d\theta^1$, $d\theta^2$ are orthonormal at x. The general case will fillow easily. Note that

$$|d\theta^{i}| = \csc(t/r), \quad |dt| = 1.$$

Let

$$F = F_{01}dt \wedge d\theta^{1} + F_{02}dt \wedge d\theta^{2} + F_{12}d\theta^{1} \wedge d\theta^{2},$$

so

$$\int_{c_{\star}} T^{-1} F T = \sum_{i=1}^{2} \left(\int_{c_{\star}} T^{-1} F_{0i} T dt \right) d\theta^{i}.$$

Thus

$$\left| \int_{c_{\star}} T^{-1} FT \right| \leq \sum_{i=1}^{2} \int_{c_{\star}} |F_{0i}| dt$$
$$\leq 2 \int_{0}^{\pi_{r/2}} |F| \sin\left(\frac{t}{r}\right) dt$$
$$\leq 2 \frac{C}{r^{2} \ln r} \cdot r.$$

If x is a point in the northern hemisphere (i.e., $t < \pi r/2$), then we have by Theorem 3.1,

$$A(x) = -dT T^{-1} + T \left(\int_{c_x} T^{-1} F T \right) T^{-1}.$$
 (5.3)

If T_0 is constant, the substituting TT_0 for T leaves (5.3) unchanged. It follows that (5.3) is also valid if x is in the southern hemisphere. Hence we have

Corollary 5.4: (i) $|A + dT T^{-1}| \leq 2C / r \ln r$. (ii) $|dT| \leq C_2 (\ln \ln r) / r$ for some constant C_2 .

Given $\delta \in (0, 1)$, let R be the set of points in S_r^3 with $\frac{1}{2}\pi r - \delta < t < \frac{1}{2}\pi r + \delta$, and let

 $U(\theta) = \lim_{t \to \frac{1}{2}\pi t \to -} T(t, \theta).$

From Corollary 5.4(ii), it follows that there exists a constant C_3 such that the inequality

 $|dU| \leq C_3 (\ln \ln r)/r \tag{5.5}$

holds on R. By Lemma 5.1, we can choose δ sufficiently small that on R,

 $|U-T| \leq 2C_1/\ln r$.

We suppose that $2C_1/\ln r < \frac{1}{2}$ so that $f: R \rightarrow u(N)$ may be defined by the power series

$$f = \ln U^{-1}T = -\sum_{n=1}^{\infty} \frac{1}{n} (1 - U^{-1}T)^n.$$

Then

4

$$|f| \leq \sum_{n=1}^{\infty} \frac{1}{n} |1 - U^{-1}T|^{n}$$
$$\leq \sum_{n=1}^{\infty} \left(\frac{2C_{1}}{\ln r}\right)^{n}$$
$$\leq \frac{4C_{1}}{\ln r}.$$
(5.6)

Let $\phi: \mathbb{R} \rightarrow [0, 1]$ be a smooth function satisfying

$$\phi(t) = \frac{1}{0} \quad |t| \ge 1, \\ 0 \quad |t| \le \frac{1}{2}.$$

Define $\widetilde{T}: R \rightarrow U(N)$ by

$$\widetilde{T}(t,\theta) = \mathrm{U}(\theta) \exp\left[\phi\left((t - \frac{1}{2}\pi r)/\delta\right)f(t,\theta)\right]$$

and extend \tilde{T} to be a smooth function on S_r^3 by setting it equal to T on $S_r^3 - R$.

Lemma 5.7: Let V and E be matrix valued functions.

(i) If $V = e^{E}$ then $|dV| \le e^{|E|} |dE|$, (ii) If $|1 - V| \le \mu < 1$ and $E = \ln V$, then

$$|dE| \leq \frac{1}{1-\mu} |dV|.$$

Proof: This follows from differentiating the power series for exp and ln.

Lemma 5.8: There exist constants C_4 , C_6 , C_7 such that on R,

(i)
$$|df| \leq C_4 \frac{\ln \ln r}{r}$$
,
(ii) $\left| \frac{\partial \widetilde{T}}{\partial t} dt \right| \leq |d\widetilde{T}| \leq \frac{C_6}{\delta \ln r}$,
(iii) $\left| \sum_{i=1}^2 \frac{\partial \widetilde{T}}{\partial \theta^i} d\theta^i \right| \leq C_7 \frac{\ln \ln r}{r}$.

Proof: (i) Apply Lemma 5.7(ii) with $\mu = \frac{1}{2}$. (ii) By Lemma 5.7(i),

$$|d\widetilde{T}| \leq |dU|e^{|f|} + e^{|f|}|df| + e^{|f|}\left|d\left[\phi\left(\frac{t-\frac{1}{2}\pi r}{\delta}\right)\right]\right||f|.$$

Then, using (5.5), (5.6), and Lemma 5.8(i),

$$|d\widetilde{T}| \leq e^{4C_1/\ln r} \left(C_3 \frac{\ln \ln r}{r} + C_4 \frac{\ln \ln r}{r} + \frac{C_5}{\delta} \frac{4C_1}{\ln r} \right)$$
$$\leq \frac{C_6}{\delta \ln r}.$$

(iii) Similar, except that the term involving δ is absent.

Lemma 5.9: For some C_9 ,

$$\int_{S_r^3} \operatorname{tr}(T^{-1} dT)^3 - \int_{S_r^3} \operatorname{tr}(\widetilde{T}^{-1} d\widetilde{T})^3 \left| \leq C_9 \frac{(\ln \ln r)^2}{\ln r} \right|$$

Proof:

$$\left| \int_{S_r^3} \operatorname{tr}(T^{-1}dT)^3 - \int_{S_r^3} \operatorname{tr}(\tilde{T}^{-1}d\tilde{T})^3 \right|$$
$$= \left| \int_{R} \operatorname{tr}(T^{-1}dT)^3 - \int_{R} \operatorname{tr}(\tilde{T}^{-1}d\tilde{T})^3 \right|$$
$$\leqslant N \int_{R} |dT|^3 + \int_{R} |\operatorname{tr}(\tilde{T}^{-1}d\tilde{T})^3|.$$

By Lemma 5.8(ii) and 5.8(iii), there exists C_8 such that

 $|\mathrm{tr}(\widetilde{T}^{-1}d\widetilde{T})^3| \leq C_8(1/\delta \ln r)[(\ln \ln r)/r]^2.$

The volume of R is bounded by $4\pi r^2 \delta$, so from Corollary 5.4(ii) and the above,

$$\left| \int_{S_{\tau}^{3}} \operatorname{tr}(T^{-1}dT)^{3} - \int_{S_{\tau}^{3}} \operatorname{tr}(\widetilde{T}^{-1}d\widetilde{T})^{3} \right|$$

 $\leq N 4\pi r^2 \delta \left[(C_2 \ln \ln r)/r \right]^3 + 4\pi r^2 \delta C_8 \left(\frac{1}{\delta \ln r} \right) \left[(\ln \ln r)/r \right]^2$ $\leq C_9 (\ln \ln r)^2 / \ln r.$

We now complete the proof of Theorem 1.1. From $trF^2 = d tr(AF - \frac{1}{3}A^3)$ and

$$|F| \leq C/r^2 \ln r$$

it follows that

$$\frac{\left|\frac{1}{8\pi^2}\int_{\mathbb{R}^4} \operatorname{tr} F^2 - \frac{1}{8\pi^2}\int_{S^3_{-}} \operatorname{tr}(AF - \frac{1}{3}A^{-3})\right|$$

$$\leq \frac{N}{8\pi^2}\int_{r}^{\infty} \left(\frac{C}{\rho^2 \ln\rho}\right)^2 2\pi\rho^3 d\rho = \frac{C_{10}}{\ln r}.$$

From Proposition 4.2,

$$\left|\frac{1}{8\pi^2}\int_{\mathbb{R}^4} \operatorname{tr} F^2 + \frac{1}{24\pi^2}\int_{S_r^4} \operatorname{tr} A^3\right| \leq C_{11} \frac{\ln \ln n}{\ln r}$$

Corollary 5.4(i) shows that the hypothesis of Proposition 4.3 is satisfied if $B = -dT \cdot T^{-1}$, so

$$\left|\frac{1}{8\pi^2} \int_{\mathbb{R}^4} \operatorname{tr} F^2 - \frac{1}{24\pi^2} \int_{S^4} \operatorname{tr} (T^{-1} dT)^3 \right| \leq C_{12} \frac{(\ln \ln r)^2}{\ln r}$$

By Lemma 5.9,

$$\left|\frac{1}{8\pi^2}\int_{\mathbb{R}^4}\mathrm{tr}F^2-n\right|\leqslant C_{1,3}\frac{(\ln\ln r)^2}{\ln r},$$

where *n* is the integer

$$\frac{1}{24\pi^2} \int_{S_{\tau}^3} \operatorname{tr}(\tilde{T}^{-1} d\tilde{T})^3$$

The proof of Theorem 1.1 is now finished by letting r tend to infinity

6. AN EXAMPLE

Let $T: S^3 \rightarrow SU(2)$ be the standard identification. Let ω be the pull-back to \mathbb{R}^4 of $T^{-1} dT$ by the radial projection. The structural equation is

$$d\omega + \omega^2 = 0.$$

Let $f: [0, \infty) \rightarrow \mathbb{R}$ be a smooth function satisfying

$$f(r) = \frac{0}{a} \quad \begin{array}{l} 0 \leqslant r \leqslant \frac{1}{2}, \\ r \geqslant 1, \end{array}$$

for some real number *a*. Using *r* for the radial coordinate, $f(r)\omega$ is a well-defined smooth form on \mathbb{R}^4 , and we define it to be a connection on the trivial SU(2) bundle.

We compute

$$F = f' dr \wedge \omega + (f^2 - f)\omega^2,$$

so $F \in O(1/r^2)$. Also,

$$F^2 = 2(f^2 - f)f' dr \wedge \omega^2$$

has compact support and

$$\frac{1}{8\pi^2} \int_{\mathbf{R}^4} \text{tr} F^2 = \frac{1}{8\pi^2} \int_0^\infty 2f'(r) (f^2(r) - f(r)) \, dr \int_{S^4} \text{tr} \omega^3$$
$$= \frac{1}{8\pi^2} \left[\frac{2}{3} f^3(r) - f^2(r) \right]_0^\infty \cdot 12 \text{ volume } S^3$$
$$= 2a^3 - 3a^2.$$

By varying a, we may obtain any real number.

7. A GENERALIZATION

Theorem 1.1 generalizes to the following situation. Let G be a compact Lie group and let $\rho: G \rightarrow U(N)$ be a representation. Let F be the curvature of some connection on some principal G bundle over \mathbb{R}^{2n} . Let

$$c_n = [(-1)^{n+1}/n] \operatorname{tr}(\rho(F)/2\pi i)^n.$$

If the connection extends to a connection on some bundle

over S^{2n} , then the Chern number¹⁰ of the associated vector bundle is $\int_{\mathbb{R}^{2n}} c_n$. This is an integer and is always divisible by (n-1)! (see Ref. 7 p. 77 or Ref. 11 p. 156).

Theorem 7.1: Suppose n > 1. If there exists a constant C such that

$$|F| \leqslant \frac{C}{r^2 \ln r}, \quad r \geqslant 2,$$

then

$$\frac{1}{(n-1)!}\int_{\mathbb{R}^{2n}}c_n$$

is an integer. Any integer value is possible if G = SU(N) and $N \ge n$.

Proof: The proof requires only minor modifications of the proof of Theorem 1.1, which we now discuss. According to the Chern-Weil theory (Ref. 7, p. 114),

$$trF^{n} = nd \int_{0}^{1} tr\{A [tF + (t^{2} - t)A^{2}]^{n-1}\}dt.$$

It follows as before that in the radial gauge,

$$\int_{\mathbb{R}^4} \operatorname{tr} F^n = n \int_0^1 (t^2 - t)^{n-1} dt \lim_{r \to \infty} \int_{S^{2n-1}_{r-1}} \operatorname{tr} A^{2n-1}.$$

An elementary integration by parts gives

$$\int_0^1 t^{n-1} (1-t)^{n-1} dt = \frac{[(n-1)!]^2}{(2n-1)!}.$$

Approximating A by $-d\tilde{T}\tilde{T}^{-1}$ for some smooth \tilde{T} : $S_{d}^{3} \rightarrow U(N)$, we find that

$$\frac{1}{(n-1)!}\int_{\mathbb{R}^{2n}}c_n$$

is approximated by

$$\frac{-1}{(2\pi i)^n} \frac{(n-1)!}{(2n-1)!} \int_{S^{\frac{2n}{2}}} \operatorname{tr}(\tilde{T}^{-1} d\tilde{T})^{2n-1}$$

This is an integer because it is the integral that gives Bott periodicity,^{*}

$$\pi_{2n-1} \mathbf{U}(N) \simeq \mathbb{Z},$$

for $n \leq N$. The integral is zero if n > N.

The proof of Theorem 7.1 breaks down if n = 1. In order to estimate the holonomy around a closed curve near infinity, we expressed the curve as the boundary of a surface where the curvature was small and used Corollary 3.4. But the sphere of radius r in \mathbb{R}^{2n} is simply connected only if n > 1.

The following theorem shows that Theorem 7.1 actually fails if n = 1.

Theorem 7.2: Let F be a two-form on \mathbb{R}^2 with values in some Lie algebra. Then F is the curvature of some connection on a principal bundle over \mathbb{R}^2 .

Proof: Write

 $F = f(x, y) \, dx \wedge dy.$

Then F is the curvature of the connection

$$A(x, y) = \left(\int_0^x f(x', y) \, dx'\right) dy.$$

ACKNOWLEDGMENT

This paper was motivated by a question raised by I. M. Singer. I would like to thank him for many interesting conversations.

 ¹M. F. Atiyah, N. J. Hitchin, I. M. Singer, "Self-duality in 425-46 fourdimensional Riemannian geometry," Proc. R. Soc. London A 362, (1978).
 ²A. A. Belavin, A. M. Polyakov, A. S. Schwartz, Yu. S. Tyupkin, "Pseudoparticle solutions of the Yang-Mills equations," Phys. Lett B 59 85-87 (1975).

⁴K. K. Uhlenbeck, "Removable singularities of Yang-Mills fields," Bull. Amer. Math. Soc. (new ser. 1 579-581 (1979).

⁴E. C. Marino and J. A. Swieca, "Non-integer topological charge and infi-

and CENER

TRALL FREEL niteness of action," P. U. C., Nota Cientifica 7/78.

F. A. Schaposnik, J. E. Solomin "Gauge field singularities and noninteger topological charge," J. Math. Phys. 20, 2110–2114 (1979).

⁶L. Schlesinger, "Parallelverschiebung und Krümmingstensor," Math. Ann. 99, 413-434 (1928).

⁷S. S. Chern, "Complex Manifolds without Potential Theory, 2nd Ed. Springer, New York, 1979.

*R. Bott, R. Seeley, "Some remarks on the paper of Callias," Commun. Math. Phys. 62, 235–245 (1978).

⁹E. Nelson, *Topics in Dynamics*, I: *Flows* (Princeton U. P., Princeton, N. J., 1970).

¹⁰J. Milnor and J. Stasheff *Characteristic Classes* (Princeton U. P., Princeton, N. J., 1974).

¹¹P. Griffiths and J. Adams *Topics in Algebraic and Analytic Geometry* Princeton U. P., Princeton, N. J., 1974.

Server DENT

 \sim